16 research outputs found

    Convergence and Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Extrema

    Full text link
    The asymptotic behavior of stochastic gradient algorithms is studied. Relying on results from differential geometry (Lojasiewicz gradient inequality), the single limit-point convergence of the algorithm iterates is demonstrated and relatively tight bounds on the convergence rate are derived. In sharp contrast to the existing asymptotic results, the new results presented here allow the objective function to have multiple and non-isolated minima. The new results also offer new insights into the asymptotic properties of several classes of recursive algorithms which are routinely used in engineering, statistics, machine learning and operations research

    Asymptotic Bias of Stochastic Gradient Search

    Get PDF
    The asymptotic behavior of the stochastic gradient algorithm with a biased gradient estimator is analyzed. Relying on arguments based on the dynamic system theory (chain-recurrence) and the differential geometry (Yomdin theorem and Lojasiewicz inequality), tight bounds on the asymptotic bias of the iterates generated by such an algorithm are derived. The obtained results hold under mild conditions and cover a broad class of high-dimensional nonlinear algorithms. Using these results, the asymptotic properties of the policy-gradient (reinforcement) learning and adaptive population Monte Carlo sampling are studied. Relying on the same results, the asymptotic behavior of the recursive maximum split-likelihood estimation in hidden Markov models is analyzed, too.Comment: arXiv admin note: text overlap with arXiv:0907.102

    Bias of Particle Approximations to Optimal Filter Derivative

    Full text link
    In many applications, a state-space model depends on a parameter which needs to be inferred from a data set. Quite often, it is necessary to perform the parameter inference online. In the maximum likelihood approach, this can be done using stochastic gradient search and the optimal filter derivative. However, the optimal filter and its derivative are not analytically tractable for a non-linear state-space model and need to be approximated numerically. In [Poyiadjis, Doucet and Singh, Biometrika 2011], a particle approximation to the optimal filter derivative has been proposed, while the corresponding LpL_{p} error bonds and the central limit theorem have been provided in [Del Moral, Doucet and Singh, SIAM Journal on Control and Optimization 2015]. Here, the bias of this particle approximation is analyzed. We derive (relatively) tight bonds on the bias in terms of the number of particles. Under (strong) mixing conditions, the bounds are uniform in time and inversely proportional to the number of particles. The obtained results apply to a (relatively) broad class of state-space models met in practice

    Analyticity of Entropy Rates of Continuous-State Hidden Markov Models

    Full text link
    The analyticity of the entropy and relative entropy rates of continuous-state hidden Markov models is studied here. Using the analytic continuation principle and the stability properties of the optimal filter, the analyticity of these rates is shown for analytically parameterized models. The obtained results hold under relatively mild conditions and cover several classes of hidden Markov models met in practice. These results are relevant for several (theoretically and practically) important problems arising in statistical inference, system identification and information theory

    Stability of Optimal Filter Higher-Order Derivatives

    Full text link
    In many scenarios, a state-space model depends on a parameter which needs to be inferred from data. Using stochastic gradient search and the optimal filter (first-order) derivative, the parameter can be estimated online. To analyze the asymptotic behavior of online methods for parameter estimation in non-linear state-space models, it is necessary to establish results on the existence and stability of the optimal filter higher-order derivatives. The existence and stability properties of these derivatives are studied here. We show that the optimal filter higher-order derivatives exist and forget initial conditions exponentially fast. We also show that the optimal filter higher-order derivatives are geometrically ergodic. The obtained results hold under (relatively) mild conditions and apply to state-space models met in practice

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Analyticity, Convergence, and Convergence Rate of Recursive Maximum-Likelihood Estimation in Hidden Markov Models

    No full text

    Parameter Estimation in General State-Space Models using Particle Methods

    No full text
    Particle filtering techniques are a set of powerful and versatile simulation-based methods to perform optimal state estimation in nonlinear non-Gaussian state-space models. If the model includes fixed parameters, a standard technique to perform parameter estimation consists of extending the state with the parameter to transform the problem into an optimal filtering problem. However, this approach requires the use of special particle filtering techniques which su#er from several drawbacks. We consider here an alternative approach combining particle filtering and gradient algorithms to perform batch and recursive maximum likelihood parameter estimation. An original particle method is presented to implement these approaches and their # corresponding author

    Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models

    No full text
    State-space models are a very general class of time series capable of modeling-dependent observations in a natural and interpretable way. We consider here the case where the latent process is modeled by a Markov chain taking its values in a continuous space and the observation at each point admits a distribution dependent of both the current state of the Markov chain and the past observation. In this context, under given regularity assumptions, we establish that (1) the filter, and its derivatives with respect to some parameters in the model, have exponential forgetting properties and (2) the extended Markov chain, whose components are the latent process, the observation sequence, the filter and its derivatives is geometrically ergodic. The regularity assumptions are typically satisfied when the latent process takes values in a compact space.Exponential forgetting Geometric ergodicity Nonlinear filtering Projective metric State-space models
    corecore